
Rao-Blackwell

Theorem 1.1 Let X ∼ fX(x, θ) and T be sufficient for θ, x ∈ X and t ∈ T. Let U be any unbiased estimator
for g(θ). Define Vt = E(U |T = t). Then V is an unbiased estimator for g(θ) and Var(V ) ≤ Var(U) with
equality iff V = U with probability one.

Proof 1.1 Since U = U(X) is an estimator, it is also a statistic. And, since T is sufficient for θ we have

V = E(U |T = t) (1)

=

∫
T

u(x)fX|T (x|T = t) dx (2)

By Fisher, and noting that u(x) is a function of x and not θ, we see that V is θ-free. Thus, V is a statistic
as well.

Further,

E(U) = g(θ) (3)

=

∫
X

u(x)fX(x, θ) dx (4)

=

∫
T

[∫
X∈T=t

u(x)fX|T (x|T = t) dx

]
fT (t, θ) dt (5)

=

∫
T

v(t)fT (t, θ) dt (6)

= E(V ) (7)

So, V is unbiased.
Now,

Var(U) = E (U − E(U))
2

(8)

= E (U − E(V ))
2

(9)

= E
(
(U − V )2

)
+ E

(
(V − E(V ))2

)
+ 2E ((U − V )(V − E(V ))) (10)

Since we know that E(U) = E(V ) by above,

E ((U − V )(V − E(V ))) =

∫
X

(V − E(V ))(U − V )fX(x, θ) dx (11)

=

∫
T

(V − E(V ))

[∫
X∈T=t

(U − V )fX|T (x|T = t) dx

]
fT (t, θ) dt (12)

=

∫
T

(V − E(V ))[0]fT (t, θ) dt (13)

= 0 (14)

and thus

Var(U) = E
(
(U − V )2

)
+ E

(
(V − E(V ))2

)
(15)

≥ E
(
(V − E(V ))2

)
(16)

≥ Var(V ) (17)

with equality iff E
(
(U − V )2

)
= 0 or V = U with probability one.
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Example 1.1 Let Xi
iid∼ N

(
µ, σ2

0

)
so that θ = µ. By exponential family we see that T =

∑n
i=1Xi is min

suff for θ = µ.
Let U = X1 with E(U) = E(X1) = µ. Thus, U is an unbiased estimator for θ with variance Var(U) =

Var(X1) = σ2
0.

Note that T =
∑n
i=1Xi = U +

∑n
i=2Xi and that

fU |T (u|T = T ) =
fT |U (t|U = u)fU (u)

fT (t)

where U ∼ N(µ, σ2
0), T ∼ N(nµ, nσ2

0), and T |U ∼ N
(
(n− 1)µ+ u, (n− 1)σ2

0

)
. Hence

fU |T (u|T = t) =

(
2π(n− 1)σ2

0

)−1/2
exp

(
− (t−(n−1)µ−u)2

2(n−1)σ2
0

) (
2πσ2

0

)−1/2
exp

(
− (u−µ)2

2σ2
0

)
(2πnσ2

0)
−1/2

exp
(
− (t−nµ)2

2nσ2
0

) (18)

=

√
n

n− 1

1√
2πσ2

0

exp

[
− 1

2σ2
0

(
(t− (n− 1)µ− u)2

n− 1
+

(u− µ)2

1
− (t− nµ)2

n

)]
(19)

=

√
n

n− 1

1√
2πσ2

0

exp

[
− 1

2σ2
0

(
t2

n− 1
+ (n− 1)µ2 +

u2

n− 1
− 2tµ− 2tu

n− 1
+ 2µu (20)

+u2 + µ2 − 2µu− t2

n
− nµ2 + 2tµ

)]
(21)

=

√
n

n− 1

1√
2πσ2

0

exp

[
− 1

2σ2
0

(
u2

n− 1
+ u2 − 2tu

n− 1
+

t2

n− 1
− t2

n

)]
(22)

=

√
n

n− 1

1√
2πσ2

0

exp

[
− 1

2σ2
0

(
n

n− 1
u2 − 2t

n− 1
u+

t2

(n− 1)n

)]
(23)

=

√
n

n− 1

1√
2πσ2

0

exp

[
− 1

2σ2
0

(
n−1
n

) ((u− t

n

)2
)]

(24)

So, U |T ∼ N
(
t
n ,

n−1
n σ2

0

)
and thus

V = E(U |T = t) (25)

=
T

n
(26)

=

∑n
i=1Xi

n
(27)

= X (28)

with E(V ) = E(X) = µ and Var(V ) = Var(X) =
σ2
0

n . Note that
σ2
0

n → 0 as n → ∞ which is better than
Var(U) = σ2

0 unless n = 1, in which case V = U .

Example 1.2 Let Xi
iid∼ U (0, θ). Lehmann-Scheffe I shows T = X[n] is min suff for θ. It is also possible to

show that T = X[n] is complete (enjoy grad school).

Note that E(X1) = θ
2 so E(2X1) = θ. Thus, U = 2X1 is an unbiased estimator for θ.

Rao-Blackwell tells us that we need to look at V = E(U |T ). To do so we need to find the joint density
function fU,T (u, t). First we note that X1 = X[i] with probability 1

n for i = 1, 2, . . . , n. Realizing that we
need i− 1 of the Xi less than X[i] and n− i− 1 of the Xi greater than X[i] but less than X[n] for Xi = X[i]

we have

fX[i],X[n]
(x, y) =

n!

(i− 1)!1!(n− i− 1)!1!

xi−11(y − x)n−i−11

θn
(29)
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The univariate distribution of X[n] is found via the CDF and is

fX[n]
(y) =

n!

(n− 1)!1!

yn−1

θn
(30)

By conditional probability laws we see that

fX[i]|X[n](x|y) =
(n− 1)!

(i− 1)!(n− i− 1)!

xi−1(y − x)n−i−1

yn−1
(31)

=
Γ(n)

Γ(i)Γ(n− i)

(
x

y

)i−1(
y − x
y

)n−i−1
1

y
(32)

= β(i, n− i)
(
x

y

)i−1(
1− x

y

)n−i−1
1

y
(33)

At this point a little trick helps. Note that x
y ∈ (0, 1). Thus,∫ 1

0

β(i, n− i)
(
x

y

)i−1(
1− x

y

)n−i−1
d
x

y
= 1 (34)

so that
X[i]

y
∼ Beta(i, n− i) (35)

with expectation

E

(
X[i]

y

)
=

i

i+ (n− i)
(36)

=
i

n
(37)

Since y is a constant, this provides E
(
X[i]

)
= y in . Substitution allows us to find

E
(
2X[i]|X[n] = y

)
= 2

i

i+ (n− i)
y (38)

= 2y
i

n
(39)

Finally, we can find E(U |T = t). Since X1 can be any of the X[i] for i = 1, 2, . . . , n we need to sum over all
possibilities. Thus,

E
(
2X1|X[n] = y

)
=

n∑
i=1

1

n

(
2y
i

n

)
(40)

=
2y

n2

n∑
i=1

i (41)

=
2y

n2

(
n(n+ 1)

2

)
(42)

=
n+ 1

n
y (43)

So, V = n+1
n X[n], which is unbiased.
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