Rao-Blackwell

Theorem 1.1 Let $\mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}, \theta)$ and T be sufficient for θ , $\mathbf{x} \in \mathfrak{X}$ and $t \in \mathfrak{T}$. Let U be any unbiased estimator for $g(\theta)$. Define $V_t = \mathrm{E}(U|T = t)$. Then V is an unbiased estimator for $g(\theta)$ and $\mathrm{Var}(V) \leq \mathrm{Var}(U)$ with equality iff V = U with probability one.

Proof 1.1 Since $U = U(\mathbf{X})$ is an estimator, it is also a statistic. And, since T is sufficient for θ we have

$$V = \mathcal{E}(U|T=t) \tag{1}$$

$$= \int_{\mathfrak{T}} u(x) f_{X|T}(x|T=t) \, dx \tag{2}$$

By Fisher, and noting that u(x) is a function of x and not θ , we see that V is θ -free. Thus, V is a statistic as well.

Further,

$$\mathbf{E}(U) = g(\theta) \tag{3}$$

$$= \int_{\mathfrak{X}} u(x) f_X(x,\theta) \, dx \tag{4}$$

$$= \int_{\mathfrak{T}} \left[\int_{X \in T=t} u(x) f_{X|T}(x|T=t) \ dx \right] f_T(t,\theta) \ dt \tag{5}$$

$$= \int_{\mathfrak{T}} v(t) f_T(t,\theta) dt$$
(6)

$$= E(V) \tag{7}$$

So, V is unbiased.

Now,

$$Var(U) = E(U - E(U))^{2}$$
(8)

$$= E \left(U - E(V) \right)^2 \tag{9}$$

$$= E((U-V)^{2}) + E((V-E(V))^{2}) + 2E((U-V)(V-E(V)))$$
(10)

Since we know that E(U) = E(V) by above,

$$\mathbf{E}\left((U-V)(V-\mathbf{E}(V))\right) = \int_{\mathfrak{X}} (V-\mathbf{E}(V))(U-V)f_X(x,\theta) \, dx \tag{11}$$

$$\int_{\mathfrak{T}} (V - \mathcal{E}(V)) \left[\int_{X \in T=t} (U - V) f_{X|T}(x|T=t) \ dx \right] f_T(t,\theta) \ dt \tag{12}$$

$$= \int_{\mathfrak{T}} (V - \mathcal{E}(V))[0] f_T(t,\theta) dt$$
(13)

$$= 0$$
 (14)

 $and\ thus$

$$\operatorname{Var}(U) = \operatorname{E}((U-V)^2) + \operatorname{E}((V-\operatorname{E}(V))^2)$$
 (15)

$$\geq \operatorname{E}\left((V - \operatorname{E}(V))^2\right) \tag{16}$$

$$\geq \operatorname{Var}(V)$$
 (17)

with equality iff $E((U-V)^2) = 0$ or V = U with probability one.

=

Example 1.1 Let $X_i \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$ so that $\theta = \mu$. By exponential family we see that $T = \sum_{i=1}^n X_i$ is min suff for $\theta = \mu$.

Let $U = X_1$ with $E(U) = E(X_1) = \mu$. Thus, U is an unbiased estimator for θ with variance Var(U) = Var(U) = Var(U) $Var(X_1) = \sigma_0^2.$ Note that $T = \sum_{i=1}^n X_i = U + \sum_{i=2}^n X_i$ and that

$$f_{U|T}(u|T = T) = \frac{f_{T|U}(t|U = u)f_U(u)}{f_T(t)}$$

where $U \sim N(\mu, \sigma_0^2)$, $T \sim N(n\mu, n\sigma_0^2)$, and $T|U \sim N((n-1)\mu + u, (n-1)\sigma_0^2)$. Hence

$$f_{U|T}(u|T=t) = \frac{\left(2\pi(n-1)\sigma_0^2\right)^{-1/2}\exp\left(-\frac{(t-(n-1)\mu-u)^2}{2(n-1)\sigma_0^2}\right)\left(2\pi\sigma_0^2\right)^{-1/2}\exp\left(-\frac{(u-\mu)^2}{2\sigma_0^2}\right)}{\left(2\pi n\sigma_0^2\right)^{-1/2}\exp\left(-\frac{(t-n\mu)^2}{2n\sigma_0^2}\right)}$$
(18)

$$= \sqrt{\frac{n}{n-1}} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left[-\frac{1}{2\sigma_0^2} \left(\frac{(t-(n-1)\mu-u)^2}{n-1} + \frac{(u-\mu)^2}{1} - \frac{(t-n\mu)^2}{n}\right)\right]$$
(19)

$$= \sqrt{\frac{n}{n-1}} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left[-\frac{1}{2\sigma_0^2} \left(\frac{t^2}{n-1} + (n-1)\mu^2 + \frac{u^2}{n-1} - 2t\mu - \frac{2tu}{n-1} + 2\mu u\right] (20)$$

$$+u^{2} + \mu^{2} - 2\mu u - \frac{t^{2}}{n} - n\mu^{2} + 2t\mu \bigg) \bigg]$$
(21)

$$= \sqrt{\frac{n}{n-1}} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left[-\frac{1}{2\sigma_0^2} \left(\frac{u^2}{n-1} + u^2 - \frac{2tu}{n-1} + \frac{t^2}{n-1} - \frac{t^2}{n}\right)\right]$$
(22)

$$= \sqrt{\frac{n}{n-1}} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left[-\frac{1}{2\sigma_0^2} \left(\frac{n}{n-1}u^2 - \frac{2t}{n-1}u + \frac{t^2}{(n-1)n}\right)\right]$$
(23)

$$= \sqrt{\frac{n}{n-1}} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left[-\frac{1}{2\sigma_0^2\left(\frac{n-1}{n}\right)} \left(\left(u-\frac{t}{n}\right)^2\right)\right]$$
(24)

So, $U|T \sim N\left(\frac{t}{n}, \frac{n-1}{n}\sigma_0^2\right)$ and thus

$$V = \mathbf{E}(U|T=t) \tag{25}$$

$$= \frac{T}{n} \tag{26}$$

$$= \frac{\sum_{i=1}^{n} X_i}{n} \tag{27}$$

$$= \overline{X} \tag{28}$$

with $E(V) = E(\overline{X}) = \mu$ and $Var(V) = Var(\overline{X}) = \frac{\sigma_0^2}{n}$. Note that $\frac{\sigma_0^2}{n} \to 0$ as $n \to \infty$ which is better than $Var(U) = \sigma_0^2$ unless n = 1, in which case V = U.

Example 1.2 Let $X_i \stackrel{iid}{\sim} U(0,\theta)$. Lehmann-Scheffe I shows $T = X_{[n]}$ is min suff for θ . It is also possible to show that $T = X_{[n]}$ is complete (enjoy grad school).

Note that $E(X_1) = \frac{\theta}{2}$ so $E(2X_1) = \theta$. Thus, $U = 2X_1$ is an unbiased estimator for θ .

Rao-Blackwell tells us that we need to look at V = E(U|T). To do so we need to find the joint density function $f_{U,T}(u,t)$. First we note that $X_1 = X_{[i]}$ with probability $\frac{1}{n}$ for i = 1, 2, ..., n. Realizing that we need i - 1 of the X_i less than $X_{[i]}$ and n - i - 1 of the X_i greater than $X_{[i]}$ but less than $X_{[n]}$ for $X_i = X_{[i]}$ we have

$$f_{X_{[i]},X_{[n]}}(x,y) = \frac{n!}{(i-1)!1!(n-i-1)!1!} \frac{x^{i-1}1(y-x)^{n-i-1}1}{\theta^n}$$
(29)

The univariate distribution of $X_{[n]}$ is found via the CDF and is

$$f_{X_{[n]}}(y) = \frac{n!}{(n-1)!1!} \frac{y^{n-1}}{\theta^n}$$
(30)

By conditional probability laws we see that

$$f_{X[i]|X[n]}(x|y) = \frac{(n-1)!}{(i-1)!(n-i-1)!} \frac{x^{i-1}(y-x)^{n-i-1}}{y^{n-1}}$$
(31)

$$= \frac{\Gamma(n)}{\Gamma(i)\Gamma(n-i)} \left(\frac{x}{y}\right)^{i-1} \left(\frac{y-x}{y}\right)^{n-i-1} \frac{1}{y}$$
(32)

$$= \beta(i,n-i)\left(\frac{x}{y}\right)^{i-1}\left(1-\frac{x}{y}\right)^{n-i-1}\frac{1}{y}$$
(33)

At this point a little trick helps. Note that $\frac{x}{y} \in (0, 1)$. Thus,

$$\int_{0}^{1} \beta(i, n-i) \left(\frac{x}{y}\right)^{i-1} \left(1 - \frac{x}{y}\right)^{n-i-1} d\frac{x}{y} = 1$$
(34)

so that

$$\frac{X_{[i]}}{y} \sim Beta(i, n-i) \tag{35}$$

 $with \ expectation$

$$E\left(\frac{X_{[i]}}{y}\right) = \frac{i}{i+(n-i)}$$
(36)

$$= \frac{i}{n} \tag{37}$$

Since y is a constant, this provides $E(X_{[i]}) = y\frac{i}{n}$. Substitution allows us to find

$$E(2X_{[i]}|X_{[n]} = y) = 2\frac{i}{i+(n-i)}y$$
(38)

$$= 2y\frac{i}{n} \tag{39}$$

Finally, we can find E(U|T = t). Since X_1 can be any of the $X_{[i]}$ for i = 1, 2, ..., n we need to sum over all possibilities. Thus,

$$\mathbf{E}\left(2X_1|X_{[n]}=y\right) = \sum_{i=1}^n \frac{1}{n}\left(2y\frac{i}{n}\right) \tag{40}$$

$$= \frac{2y}{n^2} \sum_{i=1}^{n} i$$
 (41)

$$= \frac{2y}{n^2} \left(\frac{n(n+1)}{2} \right) \tag{42}$$

$$= \frac{n+1}{n}y \tag{43}$$

So, $V = \frac{n+1}{n}X_{[n]}$, which is unbiased.