Rao-Blackwell
Theorem 1.1 Let X ~ fx(x,0) and T be sufficient for 0, x € X andt € T. Let U be any unbiased estimator
for g(0). Define V; = E(U|T = t). Then V is an unbiased estimator for g(0) and Var(V) < Var(U) with
equality iff V= U with probability one.
Proof 1.1 Since U = U(X) is an estimator, it is also a statistic. And, since T is sufficient for 6 we have
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By Fisher, and noting that u(zx) is a function of x and not 6, we see that V is 0-free. Thus, V is a statistic
as well.

Further,
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So, V is unbiased.
Now,
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Since we know that E(U) = E(V) by above,
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and thus
Var(U) = E(U-V)?) +E((V-E(V)?) (15)
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with equality iff E (U — V)?) =0 or V.= U with probability one.



Example 1.1 Let X; w N(M,UO) so that @ = p. By exponential family we see that T = Y"1 | X; is min
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Let U = X1 with E(U) = E(Xy) = p. Thus, U is an unbiased estimator for 6 with variance Var(U) =

Var(X;) = 02.
Note that T =% | X; =U+ > ", X; and that
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where U ~ N(p,02), T ~ N(np,nod), and T|U ~ N((n— 1)u+u, (n—1)03). Hence
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So, UIT ~ N (%,2=163) and thus
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with E(V) = E(X) = p and Var(V) = Var(X) = %3 Note that U—ng — 0 as n — oo which is better than
Var(U) = o unless n =1, in which case V =U.

Example 1.2 Let X; w U(0,0). Lehmann-Scheffe I shows T' = X[y, is min suff for 0. It is also possible to
show that T = X|,) is complete (enjoy grad school).

Note that E(X1) = & so E(2X;) = 0. Thus, U = 2X; is an unbiased estimator for 6.

Rao-Blackwell tells us that we need to look at V = E(U|T). To do so we need to find the joint density
function fur(u,t). First we note that X1 = Xp;) with probability - L fori=1,2,..., n. Realizing that we
need i — 1 of the X; less than Xp;) and n —i —1 of the X; greater than X(i) but less than X,y for X; = X
we have

n! xi—ll(y _ m)n—i—ll
(i — DY (n—i—1)! on




The unwariate distribution of Xy, is found via the CDF and is
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By conditional probability laws we see that
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so that
% ~ Beta(i,n — 1) (35)
with expectation
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Since y is a constant, this provides E (X[i]) = y% Substitution allows us to find
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Finally, we can find E(U|T =t). Since X1 can be any of the Xy; fori=1,2,...,n we need to sum over all
possibilities. Thus,
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So, V = "THX[n], which is unbiased.



